parallel queue - определение. Что такое parallel queue
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое parallel queue - определение

ABSTRACT DATA TYPE IN COMPUTER SCIENCE
Priority queuing; Priority queues; Priority traffic; Queue with priorities; Priority Queue; PriorityQueue; Min-priority queue; Minimum priority queue; Strict priority queuing; Parallel priority queue; Applications of priority queues
  • ''k_extract-min'' is executed on a priority queue with three processors. The green elements are returned and removed from the priority queue.
Найдено результатов: 736
Client–queue–client         
Client-Queue-Client; Client-queue-client
A client–queue–client or passive queue system is a client–server computer network in which the server is a data queue for the clients. Instead of communicating with each other directly, clients exchange data with one another by storing it in a repository (the queue) on a server.
deque         
  • browsing history]]: new websites are added to the end of the queue, while the oldest entries will be deleted when the history is too large. When a user asks to clear the browsing history for the past hour, the most recently added entries are removed.
ABSTRACT DATA TYPE FOR WHICH ELEMENTS CAN BE ADDED TO OR REMOVED FROM EITHER THE FRONT OR BACK
Doubly-ended queue; Deques; Double ended queue; Deque; Double-Ended Queue; Head-tail linked list; Doubly ended queue; Real-time deque
double-ended queue         
  • browsing history]]: new websites are added to the end of the queue, while the oldest entries will be deleted when the history is too large. When a user asks to clear the browsing history for the past hour, the most recently added entries are removed.
ABSTRACT DATA TYPE FOR WHICH ELEMENTS CAN BE ADDED TO OR REMOVED FROM EITHER THE FRONT OR BACK
Doubly-ended queue; Deques; Double ended queue; Deque; Double-Ended Queue; Head-tail linked list; Doubly ended queue; Real-time deque
<algorithm> /dek/ (deque) A queue which can have items added or removed from either end[?]. The Knuth reference below reports that the name was coined by E. J. Schweppe. [D. E. Knuth, "The Art of Computer Programming. Volume 1: Fundamental Algorithms", second edition, Sections 2.2.1, 2.6, Addison-Wesley, 1973]. Silicon Graphics (http://sgi.com/tech/stl/Deque.html). [Correct definition? Example use?] (2003-12-17)
Double-ended queue         
  • browsing history]]: new websites are added to the end of the queue, while the oldest entries will be deleted when the history is too large. When a user asks to clear the browsing history for the past hour, the most recently added entries are removed.
ABSTRACT DATA TYPE FOR WHICH ELEMENTS CAN BE ADDED TO OR REMOVED FROM EITHER THE FRONT OR BACK
Doubly-ended queue; Deques; Double ended queue; Deque; Double-Ended Queue; Head-tail linked list; Doubly ended queue; Real-time deque
In computer science, a double-ended queue (abbreviated to deque, pronounced deck, like "cheque"Jesse Liberty; Siddhartha Rao; Bradley Jones. C++ in One Hour a Day, Sams Teach Yourself, Sixth Edition.
parallel processor         
  • A graphical representation of [[Amdahl's law]]. The speedup of a program from parallelization is limited by how much of the program can be parallelized. For example, if 90% of the program can be parallelized, the theoretical maximum speedup using parallel computing would be 10 times no matter how many processors are used.
  • Beowulf cluster]]
  • Blue Gene/L]] massively parallel [[supercomputer]]
  • The [[Cray-1]] is a vector processor
  • 1=IPC = 1}}).
  • A graphical representation of [[Gustafson's law]]
  • [[ILLIAC IV]], "the most infamous of supercomputers"<ref name="infamous"/>
  • 1=IPC = 0.2 < 1}}).
  • A logical view of a [[non-uniform memory access]] (NUMA) architecture. Processors in one directory can access that directory's memory with less latency than they can access memory in the other directory's memory.
  • Tesla GPGPU card]]
  • 1=IPC = 2 > 1}}).
  • Taiwania 3 of [[Taiwan]], a parallel supercomputing device that joined [[COVID-19]] research.
PROGRAMMING PARADIGM IN WHICH MANY CALCULATIONS OR THE EXECUTION OF PROCESSES ARE CARRIED OUT SIMULTANEOUSLY
Parallel computer; Parallel processor; Parallel computation; Parallel programming; Parallel Programming; Parallel computers; Concurrent language; Concurrent event; Computer Parallelism; Parallel machine; Concurrent (programming); Parallel architecture; Parallel Computing; Parallelisation; Parallelization; Parallelized; Multicomputer; Parallelism (computing); Parellel computing; Superword Level Parallelism; Parallel programming language; Message-driven parallel programming; Parallel computer hardware; Parallel program; Parallel code; Parallel language; Parallel processing (computing); Multiple processing elements; Parallel execution units; History of parallel computing; Parallel hardware; Parallel processing computer
<parallel> A computer with more than one {central processing unit}, used for parallel processing. (1996-04-23)
Parallel computing         
  • A graphical representation of [[Amdahl's law]]. The speedup of a program from parallelization is limited by how much of the program can be parallelized. For example, if 90% of the program can be parallelized, the theoretical maximum speedup using parallel computing would be 10 times no matter how many processors are used.
  • Beowulf cluster]]
  • Blue Gene/L]] massively parallel [[supercomputer]]
  • The [[Cray-1]] is a vector processor
  • 1=IPC = 1}}).
  • A graphical representation of [[Gustafson's law]]
  • [[ILLIAC IV]], "the most infamous of supercomputers"<ref name="infamous"/>
  • 1=IPC = 0.2 < 1}}).
  • A logical view of a [[non-uniform memory access]] (NUMA) architecture. Processors in one directory can access that directory's memory with less latency than they can access memory in the other directory's memory.
  • Tesla GPGPU card]]
  • 1=IPC = 2 > 1}}).
  • Taiwania 3 of [[Taiwan]], a parallel supercomputing device that joined [[COVID-19]] research.
PROGRAMMING PARADIGM IN WHICH MANY CALCULATIONS OR THE EXECUTION OF PROCESSES ARE CARRIED OUT SIMULTANEOUSLY
Parallel computer; Parallel processor; Parallel computation; Parallel programming; Parallel Programming; Parallel computers; Concurrent language; Concurrent event; Computer Parallelism; Parallel machine; Concurrent (programming); Parallel architecture; Parallel Computing; Parallelisation; Parallelization; Parallelized; Multicomputer; Parallelism (computing); Parellel computing; Superword Level Parallelism; Parallel programming language; Message-driven parallel programming; Parallel computer hardware; Parallel program; Parallel code; Parallel language; Parallel processing (computing); Multiple processing elements; Parallel execution units; History of parallel computing; Parallel hardware; Parallel processing computer
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time.
parallel computing         
  • A graphical representation of [[Amdahl's law]]. The speedup of a program from parallelization is limited by how much of the program can be parallelized. For example, if 90% of the program can be parallelized, the theoretical maximum speedup using parallel computing would be 10 times no matter how many processors are used.
  • Beowulf cluster]]
  • Blue Gene/L]] massively parallel [[supercomputer]]
  • The [[Cray-1]] is a vector processor
  • 1=IPC = 1}}).
  • A graphical representation of [[Gustafson's law]]
  • [[ILLIAC IV]], "the most infamous of supercomputers"<ref name="infamous"/>
  • 1=IPC = 0.2 < 1}}).
  • A logical view of a [[non-uniform memory access]] (NUMA) architecture. Processors in one directory can access that directory's memory with less latency than they can access memory in the other directory's memory.
  • Tesla GPGPU card]]
  • 1=IPC = 2 > 1}}).
  • Taiwania 3 of [[Taiwan]], a parallel supercomputing device that joined [[COVID-19]] research.
PROGRAMMING PARADIGM IN WHICH MANY CALCULATIONS OR THE EXECUTION OF PROCESSES ARE CARRIED OUT SIMULTANEOUSLY
Parallel computer; Parallel processor; Parallel computation; Parallel programming; Parallel Programming; Parallel computers; Concurrent language; Concurrent event; Computer Parallelism; Parallel machine; Concurrent (programming); Parallel architecture; Parallel Computing; Parallelisation; Parallelization; Parallelized; Multicomputer; Parallelism (computing); Parellel computing; Superword Level Parallelism; Parallel programming language; Message-driven parallel programming; Parallel computer hardware; Parallel program; Parallel code; Parallel language; Parallel processing (computing); Multiple processing elements; Parallel execution units; History of parallel computing; Parallel hardware; Parallel processing computer
Parallel study         
RESEARCH MODEL IN WHICH MULTIPLE GROUPS RECEIVE EXPERIMENTAL INTERVENTIONS
Parallel groups study; Parallel groups design
A parallel study is a type of clinical study where two groups of treatments, A and B, are given so that one group receives only A while another group receives only B. Other names for this type of study include "between patient" and "non-crossover".
parallel computer         
  • A graphical representation of [[Amdahl's law]]. The speedup of a program from parallelization is limited by how much of the program can be parallelized. For example, if 90% of the program can be parallelized, the theoretical maximum speedup using parallel computing would be 10 times no matter how many processors are used.
  • Beowulf cluster]]
  • Blue Gene/L]] massively parallel [[supercomputer]]
  • The [[Cray-1]] is a vector processor
  • 1=IPC = 1}}).
  • A graphical representation of [[Gustafson's law]]
  • [[ILLIAC IV]], "the most infamous of supercomputers"<ref name="infamous"/>
  • 1=IPC = 0.2 < 1}}).
  • A logical view of a [[non-uniform memory access]] (NUMA) architecture. Processors in one directory can access that directory's memory with less latency than they can access memory in the other directory's memory.
  • Tesla GPGPU card]]
  • 1=IPC = 2 > 1}}).
  • Taiwania 3 of [[Taiwan]], a parallel supercomputing device that joined [[COVID-19]] research.
PROGRAMMING PARADIGM IN WHICH MANY CALCULATIONS OR THE EXECUTION OF PROCESSES ARE CARRIED OUT SIMULTANEOUSLY
Parallel computer; Parallel processor; Parallel computation; Parallel programming; Parallel Programming; Parallel computers; Concurrent language; Concurrent event; Computer Parallelism; Parallel machine; Concurrent (programming); Parallel architecture; Parallel Computing; Parallelisation; Parallelization; Parallelized; Multicomputer; Parallelism (computing); Parellel computing; Superword Level Parallelism; Parallel programming language; Message-driven parallel programming; Parallel computer hardware; Parallel program; Parallel code; Parallel language; Parallel processing (computing); Multiple processing elements; Parallel execution units; History of parallel computing; Parallel hardware; Parallel processing computer
parallel bars         
  • A gymnast performs on the parallel bars
APPARATUS USED IN MEN'S ARTISTIC GYMNASTICS
Parallel Bars; Gymnastics parallel bars; P bars; Parallel bars (gymnastics)
Parallel bars consist of a pair of horizontal bars on posts, which are used for doing physical exercises.
N-PLURAL

Википедия

Priority queue

In computer science, a priority queue is an abstract data-type similar to a regular queue or stack data structure. Each element in a priority queue has an associated priority. In a priority queue, elements with high priority are served before elements with low priority. In some implementations, if two elements have the same priority, they are served in the same order that they were enqueued in. In other implementations, the order of elements with the same priority is undefined.

While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data structure like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an unordered array.